

of Matterial

FROM MOLECULES TO ORGANISMS

tentors Antie Ridløy Michelle Peckham Peter Clark

WILEY

Copyrighted Material

Cell Motility

From molecules to organisms

Cell Motility: From Molecules to Organisms. Edited by Anne Ridley, Michelle Peckham and Peter Clark Copyright © 2004 John Wiley & Sons, Ltd. ISBN: 0-470-84872-3

Cell Motility

From molecules to organisms

Edited by

Anne Ridley Ludwig Institute for Cancer Research, London, UK

Michelle Peckham University of Leeds, UK

Peter Clark *Imperial College London, UK*

John Wiley & Sons, Ltd

Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

E-mail (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information with regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 470 84872 3

Typeset by Dobbie Typesetting Ltd, Tavistock, Devon

Printed and bound in Great Britain by Antony Rowe Ltd., Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

This book is dedicated to Joan Heaysman, longtime collaborator of Michael Abercrombie, to mark her reaching her seventieth year.

Contents

Preface		XV
List of Contributors		xix
1 Molecular Mecha at the Leading Ed	nisms Regulating Actin Filament Dynamics lge of Motile Cells	
Thomas D. Pollar	d	1
Inventory of cor	mponents	2
The ground stat	e of the system	5
Signalling pathw	vavs	6
Activation of th	e Arp2/3 complex	8
Growth of the b	branched actin filament network	10
Filament ageing	, remodelling and disassembly	10
Recycling ADP-	actin subunits	12
Reaction to a ch	nemoattractant	12
Reaction to the	withdrawal of a chemoattractant	12
Acknowledgeme	ents	13
References		13
2 The Role of Talin	and Myosin VII in Adhesion – A FERM	
Connection		
Margaret A. Titu	S	19
Adhesion recept	ors in Dictyostelium	22
Links between t	he <i>Dictyostelium</i> cytoskeleton and adhesion	24
A link between	M7 and talin?	28
The relationship	o of DdM7 to another FERM myosin, M10	31
Conclusions		32
Acknowledgeme	ents	32
References		32
3 Do Class I Myosi of Actin Dynamic	ns exert their Functions through Regulation	
Thierry Soldati a	nd Claudia Kistler	39
Introduction		40
Structure function	on analysis of Class I myosins	44
Structure function	on analysis of Cluss I myosmis	

Phenotypes resulting from manipulation of class I myosins	48
Class I myosins and the actin dynamics connection	49
Conclusions and outlook	52
Acknowledgements	54
References	54

4 Ephrin-regulated Contact Repulsion of Growth Cones

Lene K. Harbott, Daniel J. Marston and Catherine D. Nobes	61
Introduction	62
Eph receptor and ephrin families	62
Eph receptor/ephrin regulation of axon guidance	62
Eph receptor/ephrin mediated control of cell segregation	63
Eph receptor/ephrin signalling	64
Eph receptor activation by soluble ephrins rapidly stimulates	
the assembly of filamentous actin structures in fibroblast cells	65
EphB2 and EphA7 induced lamellipodial protrusion is	
mediated by the small GTPase Rac	65
Role of Rho GTPases in ephrin induced growth cone collapse	67
Conclusions	71
References	72

5 Interplay between the Actin Cytoskeleton, Focal Adhesions and Microtubules

Christoph Ballestrem, Natalia Magid, Julia Zonis,	
Michael Shtutman and Alexander Bershadsky	75
Introduction	76
Actin, microtubules and cell-matrix adhesions in crawling cell	
locomotion	78
Mechanosensory function of focal adhesions and its modulation	
by microtubules	81
mDia1 as a possible coordinator of actin, focal adhesions and	
microtubule assembly	84
Conclusion and perspectives	91
References	93

6 Initial Steps from Cell Migration to Cell-cell Adhesion

Jason S. Ehrlich, W. James Nelson and Marc D. H. Hansen	101
Introduction	101
Epithelial cell-cell adhesion complexes	102
Molecular interactions and functions of classical cadherins	103

CONTENTS

ix

Examining E-cadherin distribution during cell-cell adhesion	
in live cells	104
Mechanistic insights into E-cadherin function during cell-cell	
adhesion	106
The role of Rho family small GTPases and membrane dynamics	
in cell-cell adhesion	106
Rac1-containing lamellipodia drive cell-cell contact formation	
between MDCK cells	107
Cell-cell contact induces changes in Rac1 complexes	108
Effects of Rac1 mutant expression on endogenous Rac1	
complexes and cell behaviour	108
Linking Rac1 complexes back to mechanisms of cell-cell	
adhesion	111
Acknowledgements	112
References	112

7	Using Bioprobes to follow Protein Dynamics in Living Cells	
	Mark R. Holt, Daniel Y. H. Soong, James Monypenny,	117
	Tan M. Dobbie, Daniel Zicha and Graham A. Dunn	11/
	Fluorescence resonance energy transfer (FRET)	118
	Fluorescence lifetime imaging microscopy (FLIM)	120
	Total internal reflection fluorescence (TIRF)/evanescent	
	wave microscopy	122
	Fluorescence speckle microscopy (FSM)	125
	Fluorescence localization after photobleaching (FLAP)	127
	FLAP: Image acquisition and image processing	128
	FLAP: Some points to consider	131
	Concluding remarks	132
	Acknowledgements	132
	References	132

8 Actin Filament Assembly: The Search for a Barbed End

Craig F. Stovold, Stewart J. Sharp and Laura M. Machesky	
The Arp2/3 complex	137
WASp family proteins	138
The WASp-Arp2/3 pathway	139
The role of Ena/VASP proteins	144
Conclusions	146
References	147

9	Role of WASp Family Proteins in Cytoskeletal Reorganization and Cell Motility	
	Tadaomi Takenawa and Shiro Suetsugu	153
	Introduction	153
	WASp and WAVE family proteins	154
	WASp and WAVE activate the Arp2/3 complex through the	10.
	VCA region	155
	Mechanism of activation of N-WASp, WAVE1, and WAVE2	157
	N-WASp is involved in podosome formation and tubulogenesis	159
	Conclusions	161
	References	161
10	Regulation and Function of the Small GTP-binding	
	Protein ARF6 in Membrane Dynamics	
	Thierry Dubois, Emma Colucci-Guyon, Florence Niedergang,	
	Magali Prigent and Philippe Chavrier	165
	Intracellular localization of ARF6	166
	Regulation of ARF6 activation	167
	Function of ARF6 in polarized membrane delivery at the	
	plasma membrane	168
	Events downstream of ARF6 activation	170
	Acknowledgements	171
	References	171
11	Chemotaxis of Cancer Cells during Invasion and Metastasis	
	John Condeelis, Xiaoyan Song, Jonathan M. Backer,	
	Jeffrey Wyckoff and Jeffrey Segall	175
	Chemotaxis to EGF	175
	Events that define the leading edge during chemotaxis	179
	Is actin polymerization the initial asymmetry generating event?	180
	Do the early and late actin polymerization transients result	
	from different mechanisms?	182
	Conclusions	184
	References	186
12	Dynamin and Cytoskeletal-dependent Membrane Processes	
	James D. Orth, Noah W. Gray, Heather M. Thompson	
	and Mark A. McNiven	189
	Introduction	189
	Participation of dynamin in actin-based membrane dynamics	193
	Conclusions and perspectives	198
	References	199

x

13	Regulation of Microtubule Dynamics in Migrating Cells: a New Role for Rho GTPases	
	Torsten Wittmann and Clare M. Waterman-Storer	203
	Introduction	203
	Centrosome reorientation downstream of Cdc42	207
	Microtubule stabilization downstream of RhoA	209
	Regulation of microtubule dynamic instability downstream	209
	of Racl	210
	Conclusion	213
	References	213
14	Calpain Regulation of Cell Migration	
	Anna Huttenlocher	219
	Basic steps of cell movement	220
	External factors that regulate cell migration	220
	Integrin receptors and focal adhesions	222
	Calpain	222
	Mechanisms of cell detachment and focal adhesion	
	disassembly: a role for calpain	225
	Calpain during adhesion formation and directional migration	227
	Conclusions	229
	References	230
15	Role of Villin in the Dynamics of Actin Microfilaments	
	Rafika Athman, Sylvie Robine and Daniel Louvard	235
	Introduction	236
	Villin, a structural actin-binding protein	236
	Villin as a regulator of actin dynamics	240
	Perspectives	242
	References	244
16	Scar, WASp and the Arp2/3 Complex in <i>Dictyostelium</i>	
	Migration	
	Simone Blagg and Robert Insall	247
	Introduction	247
	The Arp2/3 complex and WASp family proteins	248
	Control of actin dynamics in Dictyostelium	252
	Evolutionary implications	254
	Coupling signalling pathways to Arp2/3 dependent actin	
	polymerization	255
	References	257

xi

CONTENTS	5
----------	---

xii

7	Directional Sensing: Subcellular Targeting of GPCR	
	Satory Europeon and Richard A Firtel	26
	Introduction	26
	GPCR-mediated lipid signalling in chemotaxis of	20.
	amoeboid cells	262
	Mechanisms controlling PH domain localization and	
	the role of PI3K in chemotaxis	26
	PI3K translocates upon stimulation with a chemoattractant	26
	PTEN as a negative regulator of the D3-PI signalling pathway	
	in chemotaxis	26
	Chemotaxis regulated by MEK kinase signalling	26
	The initial asymmetric signal and downstream asymmetric	
	signals	27
	References	27

18	Cell Crawling, Cell Behaviour and Biomechanics during
	Convergence and Extension
	Ray Keller and Lance Davidson

277
277
283
286
286
287
289
291
292
293
293

19 Regulation of Cell Migration In Vitro and In Vivo

Donna J Webb, Karen Donais, Shin-ichi Murase,	
Hannelore Asmussen and Alan F. Horwitz	299
Introduction	300
Adhesion dynamics in migrating cells	301
Adhesion disassembly at the cell rear	304
Intracellular trafficking of adhesion molecules	306
Migration in vivo	309
Conclusions	311
References	313

CONTENTS	
----------	--

20	Genes that Control Cell Migration during Mouse Development	
	Carmen Birchmeier	317
	Introduction	317
	Migration of neural crest cells	318
	ErbB receptors and their ligand, Nrg1	318
	Nrg1, the ErbB2/ErbB3 receptors and migration of neural	
	crest cells	320
	Sox10 controls the expression of ErbB3 during development	
	of neural crest cells	321
	c-Ret and Eph tyrosine kinase receptors and the development	
	of neural crest cells	322
	Development of migrating muscle precursor cells	324
	c-Met, its ligand SF/HGF and the Gab1 adaptor	324
	c-Met, SF/HGF and Gab1 control delamination of migrating	
	muscle precursors from the dermomyotome	325
	The homeobox gene Lbx1 is essential for correct target	
	finding of migrating muscle precursor cells	327
	Eph receptor signals during migration of muscle precursor	
	cells to the limbs	328
	Conclusions	328
	References	328
Index	x	331

xiii

Preface

The study of cell motility encompasses a wide range of approaches and techniques. This book provides a series of reviews by experts on different aspects of cell motility, from those studying molecules *in vitro* to those studying whole organisms. The reviews were commissioned from speakers at the 5th Abercrombie Symposium on Cell Motility, held in Oxford, UK in September 2003. These symposia are held every five years to commemorate the work of Michael Abercrombie, who was one of the pioneers in studying cell behaviour. Many of the concepts on how cells move that we now take for granted were established through his careful analysis. He made numerous timelapse films of moving cells cultured *in vitro*, and established that they extended lamellipodia and that when they met each other normal cells stopped moving (contact inhibition), rather than crawling over each other. The Abercrombie Symposia have become a forum for presenting the latest results in Cell Motility research.

Several articles in this volume report the enormous progress that has been made in the last few years in establishing at a molecular level how cells extend lamellipodia. The biochemical basis for the actions of actin-regulatory proteins such as the Arp2/3 complex, cofilin, profilin and capping proteins has been intensively investigated, and is discussed by Tom Pollard. A major discovery of the last five years is that the WASp-related proteins are central players in signal transduction from the plasma membrane to the Arp2/3 complex, and the regulation and action of WASp proteins is the topic of articles by the groups of Laura Machesky, Robert Insall and Tadaomi Takenawa.

Severing of actin filaments as well as *de novo* nucleation is important for altering cell morphology, as described in the chapters by Daniel Louvard and John Condeelis. A new player in the actin dynamics field is dynamin, a GTPase first characterized for its role in vesicle fission; the involvement of dynamin in cell motility is introduced by Orth and colleagues.

Lamellipodium extension is required for cell migration, but the cell body needs to move to follow the extension. Several events are critical for this. First, cell adhesion to its surroundings is important for the cell to exert a traction

PREFACE

force. Meg Titus discusses the contribution of talin, which binds to transmembrane integrin receptors, and myosins with sequence homology to talin, in cell adhesion. Second, loss of cell adhesion by cell detachment selectively at the rear of the cell is essential for productive locomotion; Anna Huttenlocher reviews the role of the protease calpain in this process. Third, actin interaction with myosin is important for generating contractile forces and movement of actin filaments inside cells, and Soldati and Kistler discuss how class I myosins contribute to these processes.

Following the movement of and interaction between proteins within living cells is essential for understanding how they contribute to cell motility. Mark Holt and colleagues describe different microscopy techniques for tracing molecules in living cells. Delivery of new membrane components to the plasma membrane is often essential for initiating and/or maintaining membrane protrusion, for example during cell migration and phagocytosis. Pierre Chavier's group describe how the small GTPase ARF6 contributes to this process.

As well as the actin cytoskeleton, microtubules play a crucial role in cell migration in many cell types. This has been known for many years, but it is only recently that the molecular basis for the contribution and regulation of microtubules has been revealed. The Rho GTPases that are well known to regulate actin polymerization turn out to be central to microtubule dynamics as well, as reviewed here by Wittmann and Waterman-Storer. Recently it has become clear that microtubules are important for regulating the turnover of integrin-mediated adhesions to the substratum, as illustrated in the review by Alexander Bershadsky and colleagues.

One of the model systems that has been most informative for carrying out a genetic analysis of proteins important for cell migration is *Dictyostelium*, a slime mould that produces cAMP to attract other *Dictyostelium* cells under starvation conditions. The chapters by Rick Firtel's and Robert Insall's groups describe how *Dictyostelium* has been used to investigate how cells polarize and migrate towards a source of chemoattractant. This work has firmly established the crucial role of the generation of membrane phosphoinositides in cell polarization.

In vivo most cells do not move alone – they interact with other cells. The mechanisms whereby cells recognize and respond to other cells vary depending on the two types of cells involved. Epithelial cells meeting other epithelial cells form stable cell–cell adhesions, and Jason Ehrlich and colleagues describe how these adhesions form and mature. On the other hand, neuronal cells can be attracted or repulsed, depending on the stimulus. Kate Nobes' group describe how the transmembrane receptors ephrins and Ephs signal to the cytoskeleton to induce cell retraction, leading to loss of contact rather than stabilization of contact.

The last five years has seen an explosion of research monitoring the migration of cells in living organisms. For Michael Abercrombie this was not

PREFACE

possible, but it is now because of technical advances in microscopy and in genetic manipulation of cells. Three chapters demonstrate the power of tracking cells *in vivo* both in the context of normal development (groups of Ray Keller and Rick Horwitz) and in cancer cell migration (Condeelis' laboratory). Genetic manipulation in mice has been crucial for identifying proteins important for migration of cell populations during development, and this approach is described by Carmen Birchmeier.

We hope that this book will provide an overview of the field of cell motility research in the early 21st century and will serve as a reference for both novices and experts. We thank all the authors for contributing to this book, and Lene Harbott and Kate Nobes for providing the cover picture.

> Anne Ridley Michelle Peckham Peter Clark

List of Contributors

Hannalore Asmussen Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA

Rafika Athman Laboratoire de morphogénèse et signalisation cellulaires, Institut Curie UMR 144, 26 rue d'Ulm, 75248 Paris cedex 05, France

Jonathan M. Backer Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Christoph Ballestrem Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel

Alexander Bershadsky Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel

Carmen Birchmeier Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany

Simone Blagg School of Biosciences, Birmingham University, Birmingham B15 2TT, UK

Philippe Chavrier Institut Curie-Section Recherche/CNRS UMR144, Membrane and Cytoskeleton Dynamics Laboratory, F-75248 Paris, France

Emma Colucci-Guyon Institut Curie-Section Recherche/CNRS UMR144, Membrane and Cytoskeleton Dynamics Laboratory, F-75248 Paris, France

John Condeelis Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Lance Davidson Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA

Ian M. Dobbie Genome Stability Laboratory, Department of Biochemistry, National University of Ireland, Galway, University Road, Galway, Ireland

Karen Donais Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA

Thierry Dubois Institut Curie-Section Recherche/CNRS UMR144, Membrane and Cytoskeleton Dynamics Laboratory, F-75248 Paris, France

Graham A. Dunn The Randall Centre, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK

Jason S. Ehrlich Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5435, USA

Richard A. Firtel Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA

Satoru Funamoto Department of Neuropathology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Noah W. Gray 1702 Guggenheim, Mayo Clinic and Foundation, Rochester, MN 55905, USA

Marc D. H. Hansen Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5435, USA

Lene K. Harbott Centre for Cell and Molecular Dynamics, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK

Mark R. Holt The Randall Centre, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK

Alan F. Horwitz Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA

Anna Huttenlocher Department of Pharmacology, 3780 MSC, 1300 University Ave., Madison, WI 53706, USA

Robert Insall School of Biosciences, Birmingham University, Birmingham B15 2TT, UK

Ray Keller Department of Biology, University of Virginia, Charlottesville, VA 22904, USA

Claudia Kistler Max-Planck-Institute for Medical Research, Heidelberg, Germany

Daniel Louvard Laboratoire de morphogénèse et signalisation cellulaires, Institut Curie UMR 144, 26 rue d'Ulm, 75248 Paris cedex 05, France

Laura M. Machesky School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK

Natalia Magid Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel

Daniel J. Marston Centre for Cell and Molecular Dynamics, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK

Mark A. McNiven 1702 Guggenheim, Mayo Clinic and Foundation, Rochester, MN 55905, USA

James Monypenny Light Microscopy, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK

Shin-ichi Murase Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA

W. James Nelson Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5435, USA

Florence Niedergang Institut Curie-Section Recherche/CNRS UMR144, Membrane and Cytoskeleton Dynamics Laboratory, F-75248 Paris, France

Catherine D. Nobes Centre for Cell and Molecular Dynamics, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK

James D. Orth 1702 Guggenheim, Mayo Clinic and Foundation, Rochester, MN 55905, USA

Thomas D. Pollard Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA

Magali Prigent Institut Curie-Section Recherche/CNRS UMR144, Membrane and Cytoskeleton Dynamics Laboratory, F-75248 Paris, France

Sylvie Robine Laboratoire de morphogénèse et signalisation cellulaires, Institut Curie UMR 144, 26 rue d'Ulm, 75248 Paris cedex 05, France

Jeffrey Segall Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Stewart J. Sharp School of Biosciences, University of Birmingham, Birmingham B15 2TT

Michael Shtutman Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel

Thierry Soldati Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Xiaoyan Song Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Daniel Y. H. Soong The Randall Centre, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK

Craig F. Stovold School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK

Shiro Suetsugu Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Tadaomi Takenawa Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Heather M. Thompson 1702 Guggenheim, Mayo Clinic and Foundation, Rochester, MN 55905, USA

Margaret A. Titus Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA

Clare M. Waterman-Storer Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

Donna J. Webb Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA

Torsten Wittmann Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

Jeffrey Wyckoff Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Daniel Zicha Light Microscopy, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK

Julia Zonis Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel

xxii

Figure 5.5

Figure 6.1

Cell Motility: From Molecules to Organisms. Edited by Anne Ridley, Michelle Peckham and Peter Clark Copyright © 2004 John Wiley & Sons, Ltd. ISBN: 0-470-84872-3